Skip to main content
Logo image

Section 5.5 Change of Basis (GT5)

Subsection 5.5.1 Warm Up

Subsection 5.5.2 Class Activities

Remark 5.5.1.

So far, when working with the Euclidean vector space \(\IR^n\text{,}\) we have primarily worked with the standard basis \(\mathcal{E}=\setList{\vec{e}_1,\dots, \vec{e}_n}\text{.}\) We can explore alternative perspectives more easily if we expand our toolkit to analyze different bases.

Activity 5.5.2.

Let \(\mathcal{B}=\setList{\vec{v}_1,\vec{v}_2,\vec{v}_3}=\setList{\begin{bmatrix}1\\0\\1\end{bmatrix},\begin{bmatrix}1\\-1\\1\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}}\text{.}\)
(a)
Is \(\cal{B}\) a basis of \(\IR^3\text{?}\)
  1. Yes.
  2. No.
(b)
Since \(\cal{B}\) is a basis, we know that if \(\vec{v}\in \IR^3\text{,}\) the following vector equation will have a unique solution:
\begin{equation*} x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3=\vec{v} \end{equation*}
Given this, we define a map \(C_{\mathcal{B}}\colon\IR^3\to\IR^3\) via the rule that \(C_{\mathcal{B}}(\vec{v})\) is equal to the unique solution to the above vector equation. The map \(C_{\mathcal{B}}\) is a linear map.
Compute \(C_{\mathcal{B}}\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right).\)
(c)
Compute \(C_\mathcal{B}(\vec{e}_1),C_\mathcal{B}(\vec{e}_2), C_\mathcal{B}(\vec{e}_3)\) and, in doing so, write down the standard matrix \(M_\mathcal{B}\) of \(C_\mathcal{B}\text{.}\)

Observation 5.5.3.

Note that one way to compute \(M_{\mathcal{B}}\) is calculate the RREF of the following matrix:
\begin{equation*} \left[\begin{array}{ccc|ccc}1&1&0&1&0&0\\ 0&-1&1&0&1&0\\ 1&1&1&0&0&1\end{array}\right]\sim\left[\begin{array}{ccc|ccc}1&0&0&2&1&-1\\ 0&1&0&-1&-1&1\\ 0&0&1&-1&0&1\end{array}\right] \end{equation*}
Thus, the matrix \(M_{\mathcal{B}}\) is the inverse of the matrix \([\vec{v}_1\ \vec{v}_2\ \vec{v}_3]\text{.}\) That is:
\begin{equation*} M_{\mathcal{B}}^{-1}=[\vec{v}_1\ \vec{v}_2\ \vec{v}_3]. \end{equation*}

Definition 5.5.4.

Given a basis \(\cal{B}=\setList{\vec{v}_1,\dots, \vec{v}_n}\) of \(\IR^n\text{,}\) the change of basis/coordinate transformation from the standard basis to \(\mathcal{B}\) is the transformation \(C_\mathcal{B}\colon\IR^n\to\IR^n\) defined by the property that, for any vector \(\vec{v}\in\IR^n\text{,}\) the vector \(C_\mathcal{B}(\vec{v})\) is the unique solution to the vector equation:
\begin{equation*} x_1\vec{v}_1+\dots+x_n\vec{v}_n=\vec{v}. \end{equation*}
Its standard matrix is called the change-of-basis matrix from the standard basis to \(\mathcal{B}\) and is denoted by \(M_{\mathcal{B}}\text{.}\) It satisfies the following:
\begin{equation*} M_{\mathcal{B}}^{-1}=[\vec{v}_1\ \cdots\ \vec{v}_n]. \end{equation*}

Remark 5.5.5.

The vector \(C_\mathcal{B}(\vec{v})\) is the \(\mathcal{B}\)-coordinates of \(\vec{v}\text{.}\) If you work with standard coordinates, and I work with \(\mathcal{B}\)-coordinates, then to build the vector that you call \(\vec{v}=\begin{bmatrix}a_1\\\vdots\\a_n\end{bmatrix}=a_1\vec{e}_1+\cdots+a_n\vec{e}_n\text{,}\) I would first compute \(C_\mathcal{B}(\vec{v})=\begin{bmatrix}x_1\\\vdots\\x_n\end{bmatrix}\) and then build \(\vec{v}=x_1\vec{v}_1+\cdots+x_n\vec{v}_n\text{.}\)
In particular, notation as above, we would have:
\begin{equation*} a_1\vec{e}_1+\cdots a_n\vec{e}_n=\vec{v}=x_1\vec{v}_1+\cdots+x_n\vec{v}_n. \end{equation*}

Activity 5.5.6.

Let \(\vec{v}_1=\begin{bmatrix}1\\-2\\1\end{bmatrix},\ \vec{v}_2=\begin{bmatrix}-1\\0\\3\end{bmatrix},\ \vec{v}_3=\begin{bmatrix}0\\1\\-1\end{bmatrix}\text{,}\) and \(\mathcal{B}=\setList{\vec{v}_1,\vec{v}_2,\vec{v}_3}\)
(a)
Calculate \(M_{\mathcal{B}}\) using technology.
(b)
Use your result to calculate \(C_\mathcal{B}\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right)\) and express the vector \(\begin{bmatrix}1\\1\\1\end{bmatrix}\) as a linear combination of \(\vec{v}_1,\vec{v}_2,\vec{v}_3\text{.}\)

Observation 5.5.7.

Let \(T\colon\IR^n\to\IR^n\) be a linear transformation and let \(A\) denote its standard matrix. If \(\cal{B}=\setList{\vec{v}_1,\dots, \vec{v}_n}\) is some other basis, then we have:
\begin{align*} M_\mathcal{B}AM_{\mathcal{B}}^{-1} \amp= M_\mathcal{B}A[\vec{v_1}\cdots\vec{v}_n] \\ \amp= M_\mathcal{B}[T(\vec{v}_1)\cdots T(\vec{v}_n)]\\ \amp= [C_\mathcal{B}(T(\vec{v}_1))\cdots C_\mathcal{B}(T(\vec{v}_n))] \end{align*}
In other words, the matrix \(M_{\mathcal{B}}AM_{\mathcal{B}}^{-1}\) is the matrix whose columns consist of \(\mathcal{B}\)-coordinate vectors of the image vectors \(T(\vec{v}_i)\text{.}\) The matrix \(M_{\mathcal{B}}AM_{\mathcal{B}}^{-1}\) is called the matrix of \(T\) with respect to \(\mathcal{B}\)-coordinates.

Activity 5.5.8.

Let \(\mathcal{B}=\setList{\vec{v}_1,\vec{v}_2,\vec{v}_3}=\setList{\begin{bmatrix}1\\-2\\1\end{bmatrix},\begin{bmatrix}-1\\0\\3\end{bmatrix},\begin{bmatrix}0\\1\\-1\end{bmatrix}}\) be basis from the previous Activity. Let \(T\) denote the linear transformation whose standard matrix is given by:
\begin{equation*} A=\begin{bmatrix}9&4&4\\6&9&2\\-18&-16&-9\end{bmatrix}. \end{equation*}
(a)
Calculate the matrix \(M_\mathcal{B}AM_{\mathcal{B}}^{-1}\text{.}\)
(b)
The matrix \(A\) describes how \(T\) transforms the standard basis of \(\IR^3\text{.}\) The matrix \(M_\mathcal{B}AM_{\mathcal{B}}^{-1}\) describes how \(T\) transforms the basis \(\mathcal{B}\) (in \(\mathcal{B}\)-coordinates).
Which of these two descriptions of \(T\) is most helpful to you in describing/understanding/visualizing the transformation \(T\) and why?

Subsection 5.5.3 Sample Problem and Solution

Example 5.5.9.

Let \(\mathcal{B}=\setList{\begin{bmatrix}-2\\-2\\1\end{bmatrix},\begin{bmatrix}-1\\-2\\-1\end{bmatrix},\begin{bmatrix}1\\3\\2\end{bmatrix}}\text{,}\) and \(\vec{v}=\begin{bmatrix}1\\2\\3\end{bmatrix}\text{.}\)
(a)
Explain and demonstrate how to verify that \(\mathcal{B}\) is a basis of \(\IR^3\) and how to calculate \(M_\mathcal{B}\text{,}\) the change-of-basis matrix from the standard basis of \(\IR^3\) to \(\mathcal{B}\text{.}\)
(b)
Explain and demonstrate how to use \(M_\mathcal{B}\) to express \(\vec{v}\) in terms of \(\mathcal{B}\)-basis vectors.
Solution.
(a)
We can accomplish both tasks by calculating the RREF of the following matrix:
\begin{equation*} \RREF\left[\begin{array}{ccc|ccc}-2&-1&1&1&0&0\\ -2&-2&3&0&1&0\\1&-1&2&0&0&1\end{array}\right] = \left[\begin{array}{ccc|ccc}1&0&0&1&-1&1\\ 0&1&0&-7&5&-4\\ 0&0&1&-4& 3&-2\end{array}\right]. \end{equation*}
The fact that the matrix to the left of the vertical bar is the identity matrix tells that \(\mathcal{B}\) is a basis. The matrix on the right hand side of the bar is equal to the change-of-basis matrix:
\begin{equation*} M_\mathcal{B}=\left[\begin{array}{ccc}1&-1&1\\ -7&5&-4\\ -4& 3&-2\end{array}\right]. \end{equation*}
(b)
By definition of the change of basis matrix, if \(\vec{v}=\begin{bmatrix}1\\2\\3\end{bmatrix}\text{,}\) then the coordinates of \(\vec{v}\) with respect to \(\mathcal{B}\) are given by:
\begin{equation*} M_\mathcal{B}\vec{v}=M_\mathcal{B}=\left[\begin{array}{ccc}1&-1&1\\ -7&5&-4\\ -4& 3&-2\end{array}\right]\begin{bmatrix}1\\2\\3\end{bmatrix}=\begin{bmatrix}2\\-9\\-4\end{bmatrix}. \end{equation*}
It follows that:
\begin{equation*} \begin{bmatrix}1\\2\\3\end{bmatrix}=2\begin{bmatrix}-2\\-2\\1\end{bmatrix} -9\begin{bmatrix}-1\\-2\\-1\end{bmatrix} -4\begin{bmatrix}1\\3\\2\end{bmatrix}. \end{equation*}